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1.0 SUMMARY 
 
Sparse aperture (SA) digital holography (DH) is a potentially valuable tool for 3D 
imaging within many commercial and military applications. By employing a common 
reference field across sub-apertures, this form of DH enables coherent phase 
measurements to be obtained over the full optical aperture leading to excellent 3D 
resolution in a compact low-cost package. However, the image quality obtained from 
such a system is seen to degrade quickly as SA fill-factor is reduced. The two primary 
reasons for this degradation are (a) missing data and/or aliasing associated with under-
sampling and (b) SNR reduction associated with fewer collected photons. Our work in 
this project has demonstrated that compressive sensing (CS) techniques may be 
employed to improve reconstructed image quality. We demonstrate DH reconstructions 
that exploit a sparse dictionary prior and we quantitatively compare the performance of 
CS and non-CS based methods as a functions of measurement SNR, aperture sparsity, 
and degree of focal plane under-sampling.  
 

2.0 INTRODUCTION 
 
Sampling of continuous signals in space/time/wavelength has become ubiquitous in 
modern digital imaging and other sensing systems. The Nyquist theorem (1,2) forms the 
mathematical foundation of the relevant sampling theory and it specifies that a band-
limited signal can be sampled at the Nyquist rate (i.e., twice the highest frequency) 
without any loss of information. However, most signals of interest possess additional 
structure that can reduce the inherent degrees of freedom required to uniquely describe 
the signal. For example, natural scenes tend to be spatially correlated and therefore 
sparse or compressible in some transform domain. Such signals can be sampled at 
sub-Nyquist rates with minimal or sometimes no loss of information. This fact forms the 
basis of the many widely successful post-measurement image compression algorithms 
such as JPEG2000 which regularly yield compression ratios of 10x or greater without 
loss of visual quality.(3) The CS theory rigorously proves that under certain conditions, 
sub-Nyquist sampling can be sufficient to reconstruct a sparse signal with no loss of 
information.(4-7) This result is not limited to post-measurement compression, but is also 
relevant to the measurement process itself. More specifically, for signals that can be 
represented by R non-zero coefficients in some native space of dimension N, the CS 
theory predicts that the number of measurements required is only M = Rlog(N) in 
contrast with Nyquist who predicts M=2N.(4) It is worth noting that a central requirement 
of this theory is that the measurement/sampling functions are incoherent to the space in 
which the signal is sparse. This requirement yields the rather surprising result that 
random sampling kernels/projections can be an effective measurement tool.(6) The 
power of random projections is one of the most significant outcomes of the recent CS 
revolution. Another very significant outcome is the large class of nonlinear 
reconstruction algorithm that enable the insertion of various additional types of prior 
knowledge (i.e., beyond simple sparsity) in order to improve image quality.(8-11) It is 
the power of these nonlinear algorithms that enables the solution to an underdetermined 
reconstruction problem via exploitation of priors. Our primary focus in this project as 
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described below, is the use of a very strong dictionary prior combined with modern 
nonlinear reconstruction techniques. 

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES 
 
3.1 Physical system models 
 
The DH systems shown in Figure 1 are simplified schematic representations of two 
candidate designs that we have studied.  
 
Consider the full aperture (FA) image plane architecture of Figure 1a as an example. 
  

 
Figure 1: Various Optical Architectures for DH. (a) The Full Aperture (FA) Image Plane 

Architecture in which the Laser Diode (LD) Provides Coherent Illumination to an Object 
via Some Illumination Optics (IO). A Small Amount of Light from the LD is Picked-Off by a 
Beam-Splitter (BS) to Form a Reference Field. The Scattered Object Field is Imaged Using 

a Lens and Interferes with the Reference Field on the Focal Plane Array (FPA). (b) The 
Sparse Aperture (SA) Image Plane Architecture in Which the System of Figure 1a is 

Constructed by Tiling a Collection of Smaller Such Systems and Employing a Common 
Reference Beam 

 
The DH imaging operation depicted in this Figure can be mathematically represented in 
a way that facilitates the application of a CS approach. Let the object be illuminated by a 
mono-chromatic plane wave with unit field amplitude. The scattered field leaving the 
object therefore, may be written as  
 (1) 

O’(x,y)exp(ikz) where k = 2π/λ 
 
z is the axial direction of propagation, and O’(x,y) is the complex-valued reflectance 
function of the object. The use of a lens in figure 1a allows us to write the object field at 
the focal plane (z=0) as simply 
 (2) 

O(x,y) = O’(x,y)*P(x,y)  
 
where P(x,y) is the point spread function (PSF) of the imaging system which for 
notational simplicity we will assume also captures the radiometric collection efficiency of 
the optics. In order to apply the CS formalism we will discretize the functions in this 

  
(a)                                                            (b) 
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equation according to Nyquist sampling, unwrap all 2D signals into 1D vector 
representations, and rewrite equation as  
 (3) 

o = Po’  
 
where o’ is a N-element complex-valued vector representing the light scattered from the 
object, P is the linear Toeplitz operator representing convolution by the system PSF, 
and o is the N-element vector representing the object field incident on the FPA. Note 
that because this is a DH system, the FPA does not measure o directly, but rather 
measures a sampled version of |o+r|2, where r is the N-element vector representing the 
reference field which is mixed with o on the FPA. The FPA output y therefore is simply 
the result of applying the sampling operator S to the interference signal |o+r|2 so that  
 (4) 

y = SD(oo† + rr† + ro† + or†) 
 
where D indicates an operator which selects the diagonal elements of the matrix 
argument and the superscript † indicates Hermitian conjugate. Note that the vector 
outer products in this equation generate NxN matrices which after passing through the 
operator D produce N-element complex-valued vectors. The sampling operator for a 
typical FPA involves spatially integrating over disjoint local subsets of these elements to 
produce the M-element vector y. Alternate sampling operators may also be considered 
(e.g., random down-sampling or block-wise contiguous down sampling) in order to 
model other physically meaningful FPA measurement strategies and geometries. 

 
3.2 Application space 
 
There are a wide variety of defense applications for which DH may offer substantial 
operational benefits including surveillance, tracking, biometrics, change detection, 
package inspection, metrology, etc. For the purposes of this project we will focus on 
a notional application based on the inspection of printed circuit boards (PCBs). This 
application will facilitate the discussion of optical architectures and the use of 
relevant numerical values, making it possible to quantify the benefits of the marriage 
of DH and CS. It is important to note that the work described here is not limited in its 
applicability to PCB inspection and the PCB application is used only as a surrogate 
for other potential DoD applications. Like the objects found in those other potential 
applications, it is apparent that the objects of interest to PCB inspection may be 
characterized by additional constraints beyond simple sparsity. The tendency to see 
parallel arrays of long traces can be represented by an additional correlation 
structure term (e.g., mathematically characterized for example using an annulus in 
2D Fourier space – a form of spectral sparsity) which serves to better condition the 
reconstruction problem. This improved mathematical conditioning has the effect of 
increasing reconstructed image quality as M (i.e., the number of measurements) 
and/or measurement SNR is decreased. Additional prior knowledge that has been 
incorporated toward this same goal includes the binary-valued nature of both the 
reflectance and surface relief functions (i.e., metal traces versus ceramic substrate 
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versus polymer resist) as well as the discrete nature of the allowed trace 
orientations. 
 

 
Figure 2:  Modern Example Depicting Representative Characteristics of High Density 

Multi-Layer PCB 
 
 
4.0 RESULTS AND DISCUSSION 
 
Our project was structured into five tasks. Results will be organized and presented 
below according to this structure.  
 
4.1 Task 1 - Develop linearized and/or nearly-linear DH system models suitable 

for use within the CS framework 
 
Early work on Task 1 generated two operational DH models. Model 1 is a one-
dimensional physics-based model based on phase shifting digital in-line holography. 
Limiting this initial model to 1D results in lower computational costs and will allow us to 
explore a larger space of physical parameters. The current physics-based model 
includes the following components: (a) surface relief object model, (b) diffraction-limited 
lens model, and (c) focal plane model. The various model parameters may be 
programmed as desired and we have explored a wide range of values. Mode 2 is a 
dictionary based compressive sensing (CS) model of the form  
 (5) 

y = SPGx + n 
 
where x is a sparse vector that generates the object via application of the dictionary G, 
P is the optical channel matrix, S is the FPA sampling operator, and n is the signal 
dependent shot noise. Because x is sparse, the product Gx produces an object with 
relatively few surface relief features (e.g., metal traces) on a uniform dielectric 
substrate. The amplitude and phase of these features are captured in the dictionary G. 
It is important to note that Model 2 is completely linear and therefore amenable to the 
wide range of CS reconstruction algorithms that have been recently published. Later 
work in this task was devoted to refining and exercising our physics-based model of 
phase shifting digital in-line holography. The various model parameters have been set 

 

Spacer

Metallic Traces Dielectric Planarization
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to the nominal values of wavelength = 1.1 µm, object standoff = 1m, object size = 2cm, 
object feature size 10µm, object feature height = 3µm, lens aperture = 22cm, lens focal 
length = 41cm, system magnification = 0.69, and a range of FPA pixel sizes and 
illumination powers. Note that for this set of parameters the diffraction-limited spot size 
full-width is 4.6µm and the image of a single object feature has a width of 6.9µm in the 
focal plane. In Figure 3 below we show the reconstructed and original object amplitude 
(left) and phase (right) for the case of 1µW illumination at the object, 10ms detector 
integration time, and 1µm detector sampling. Recall that the objects used in this work 
are sparse surface relief objects intended to represent printed circuit boards. For these 
examples we have selected a metal reflectivity of 1.0 and a dielectric reflectivity of 0.8 
with a metal thickness of 3µm.  Objects are created randomly with a spatial feature 
density of 0.01.  
 

  
Figure 3: Original (Blue) and Reconstructed (Green) Image Plane Electric Field Using a 

Traditional 4-Exposure Phase Shifting Digital Holography Algorithm 
 
In Figure 4 below, we provide an expanded view of the amplitude reconstruction using 
several values of focal plane sampling. All other parameters remain the same as Figure 
3. We notice from this data that the 1µm detector pitch is sufficient to yield a high-quality 
reconstruction, albeit with the expected ringing that typically characterizes DH 
reconstructions. The reconstructions using 2µm and 4µm detector pixels however, show 
significant degradation. 
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Figure 4: Zoom-In on the Amplitude of a Single Object Reflectance Feature for Three 

Different Values of Focal Plane Sampling (a) 1µm, (b) 2µm, and (c) 4µm 
 

4.2 Task 2 - Develop and/or adapt CS reconstruction algorithms for use with 
linearized and/or nearly-linear DH measurement models 

 
Early work in Task 2 implemented both a traditional physics-based reconstruction 
algorithm (i.e., backpropagation) and a corresponding CS-based post-processing 
algorithm. The traditional reconstruction algorithm is based on a four-exposure 
sequence in which four different reference phase values are used. In the absence of 
noise this approach completely removes the DC and ghost image terms from the in-line 
recording geometry. In the presence of noise and other imperfections however, this 
reconstruction will suffer from error. This traditional reconstruction serves as the input to 
our CS-based reconstruction algorithm which is based on the dictionary-sparse model 
described above. Our CS-based reconstruction employs the iterative soft thresholding 
(IST) method to find the sparse vector x (i.e., and associated reconstructed object Gx) 
which best matches the object estimate obtained from the traditional reconstruction 
algorithm. Early results showed that substantial error reduction could be obtained via 
this post-processing. Results from this task used the optical resolution, detector plane 
sampling, and reconstructed SNR outcomes from Task 1 in order to exercise our Task 2 
algorithm. Some results are shown in Figure 5 below.  The data in this figure is obtained 
by using the results from Figure 4 to estimate the effective PSF (i.e., we use a 5µm full-
width sinc() for the P matrix), under-sampling factor (i.e., we used the 4µm pixel spacing 
to define the S matrix), and noise strength.  Figure 5a is the result obtained over a small 
1mm section of the reconstruction using a traditional DH holography algorithm. Figure 
5b shows the result from our dictionary-based CS reconstruction method compared with 
the correct surface relief pattern. We see that substantial denoising and resolution 
improvement are obtained. Note that the algorithm is not limited to binary-valued 
surface relief profiles and accurately extracts all of the amplitudes in this example. This 
result demonstrates the expected benefit of CS to tolerate 50% fill-factor. Carefully 
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quantifying the degree of benefit and its dependence on system parameters such as 
object standoff, laser power, and NEP is the subject of Task 4. 
 

 
Figure 5: Traditional (a) and CS-Inspired Reconstruction of a 1mm Portion of a Non-

Binary Surface Relief Object. Optical Resolution, Noise, and Under-Sampling are 
Comparable to Figure 4c  

 
4.3 Task 3 - Investigate additional signal and task priors to further improve the 

quality of DH reconstructions 
 
Extending the 1D models described above into two-dimensions was a primary outcome 
of this task. In the process of building these improved 2D models we were able to also 
include (a) optical performance informed by the five primary Seidel aberrations (i.e., in 
additional to the earlier diffraction-limited performance), (b) the binary-valued nature of 
the PCB amplitude and phase functions, and (c) spatial correlation between the 
amplitude and phase reconstructions. Figure 6 below shows some preliminary results 
from the 2D model. Figure 6a below depicts the original sparse object with dictionary 
sparsity level = 18. Because this is a surface relief object, only the amplitude is shown. 
The phase function is identical.  Figures 6b and 6c below presents the amplitude and 
phase reconstructions obtained using a traditional backpropagation algorithm when the 
measurement is obtained without under-sampling. We can see from this data that the 
traditional algorithm works very well at these SNR levels in the absence of under-
sampling. All other system parameters are as described above (i.e., wavelength = 1.1 
µm, object standoff = 1m, object size = 2cm, object feature size 10µm, object feature 
height = 3µm, lens aperture = 22cm, lens focal length = 41cm, system magnification = 
0.69, 1µW illumination at the object, and 10ms detector integration time). Figure 6d and 
6e is for 4x under-sampling. We see that the conventional reconstruction algorithm 
completely fails at these modest degree of under-sampling and noise levels. This may 
be contrasted with the data shown in Figure 7 below, where we have repeated the 
simulation experiment of Figure 6 using our CS reconstruction algorithm. This results 
demonstrates that our nonlinear CS algorithm is capable of producing near-perfect 
reconstructions at 4x under-sampling and still-useful reconstructions even with 16x 
under-sampling. Note that the results shown in Figure 6 and 7 are based on the FA 
architecture. 
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Figure 6:  Extension of 1D results into 2D. (a) Sparse Object Amplitude (Phase is Identical 
for Surface Relief Pattern), Reconstructions of (b) Amplitude and (c) Phase Using a 
Conventional Backpropagation Algorithm without Under-Sampling (d) and (e) are 

Amplitude and Phase Results Obtained from 4x Under-Sampling 
 

 
Figure 7:  CS Reconstruction of the Object Shown in Figure 6a and Under the Same 
Measurement Conditions. (a) Amplitude and (b) Phase Reconstruction for 4x Under-

Sampling. (c) and (d) Correspond to 16x Under-Sampling 
 
 

 
(a)                            (b)                                (c) 

 
(d)                                (e) 

 
(a)                              (b) 

 
(c)                              (d) 
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4.4 Task 4 - System study for full-aperture DH system   
 
In this task, we undertook a systematic study of reconstruction performance for the FA 
architecture. The system layout and associated numerical parameters (i.e., slightly 
different from those reported above) are shown in Figure 8 below. The variables that we 
studied/varied were (a) exposure time (i.e., which together with the illumination power 
determines the shot noise level), (b) object sparsity, and (c) degree of under-sampling in 
the FPA. We found the expected trends in all of these variables. For example, 
increasing exposure time from 10ms to 100ms was found to reduce reconstruction 
error. Increasing the number of sparse coefficients required to describe the object from 
11 to 18 (i.e., making the object less sparse) was found to increase reconstruction error. 
And the most severe influence on reconstruction quality was due to the degree of 
under-sampling, with 16x under-sampling yielding reconstruction quality far inferior to 
the nearly-perfect reconstructions obtained at only 4x under-sampling. Some 
representative data is shown in Figure 9 below. We notice from this data that 16x under-
sampling with sparsity=11 yields nearly identical performance to 8x under-sampling with 
sparsity = 18. Representative reconstructed images are shown in Figure 10 below and 
demonstrate that this level of RMSE < 0.1 corresponds to essentially perfect 
reconstruction. 
 

 
Figure 8:  Physical System Layout Used in Task 4 and Task 5 Studies. BS: Beam 
Splitters, L: Lens (210mm Diameter, 410mm Focal Length), M: Mirror, Object is @ 

1000mm from the Lens, Object Feature Size: 2.436µm, Detector Pixel Size 2.436µm, 
Illumination Beam Angle 𝟏𝟏𝟏𝟏𝟎𝟎 
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Figure 9: Reconstruction RMSE Versus Exposure Time Using the FA System for (a) 
Amplitude and (b) Phase Reconstructions with 8x and 16x Under-Sampling (US) and 

Object Sparsity (S) Levels of 11 and 18 
 

 
Figure 10: Example Reconstructions Corresponding to Approximately RMSE = 0.05. (a) 
8x Under-Sampling with Sparsity = 18 and (b) 16x Under-Sampling with Sparsity = 11 

 
4.5 Task 5 - System study for sparse aperture DH system 
 
A significant benefit of holographic measurement is the ability to synthesize large 
coherent apertures from a collection of small sparse apertures. In this task we 
undertook a systematic study of sparse aperture digital holography aided by CS inspired 
reconstruction algorithms. Because it is important to understand how coherent aperture 
synthesis impacts reconstructed image quality, we have studied both single aperture 
(i.e., using only one of the small lenses depicted in Figure 8) and dual-aperture (i.e., 
using a diagonal pair of small lenses) approaches. Figure 11 presents some 
representative results from this study. Note that the RMSE obtained using a single small 
aperture (i.e., shown in Figure 11a) is quite poor for all values of exposure time, under-
sampling, and sparsity. This is because the object feature size is well-below the 
diffraction-limited resolution of a single small aperture. From Figure 11b we see that the 
synthetic aperture is able to recover this lost resolution and provide excellent RMSE. 
Also notable is the stronger dependence on exposure time (i.e., compared with Figure 
9) which arises from poorer light collection efficiency of the sparse aperture system. 
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Figure 12 presents example reconstructions from the 16x under-sampled case with 
sparsity = 18. Note that the reconstruction using a single aperture (Figure 12a) is very 
poor while the result using the synthesized aperture (Figure 12b) is excellent. 
 

 
Figure 11: Amplitude Reconstruction RMSE Versus Exposure Time Using (a) a Single 

Small Aperture and (b) a Diagonal Pair of Small Apertures with 8x and 16x Under-
Sampling (US) and Object Sparsity (S) Levels of 11 and 18 

 

 
Figure 12: Amplitude Reconstructions from a Sparse Aperture System Using 16x Under-

Sampling and Object Sparsity = 18. (a) Reconstruction Obtained from a Single Small 
Aperture and (b) Reconstruction Obtained from a Diagonal Pair of Small Apertures 

 
 
5.0 CONCLUSION 
 
This report has described a new approach to the reconstruction of digital holographic 
images. We have developed a nonlinear reconstruction algorithm inspired by 
compressive sensing, which exploits a dictionary prior and yields high quality amplitude 
and phase images from severely under-sampled measurements. We show that 
although traditional backpropagation reconstruction methods fail at 4x FPA under-
sampling, our new algorithms can successfully reconstruct essentially perfect (i.e., 
RMSE < 0.1) 3D images from 16x under-sampled data. We demonstrate that the 
dependence on SNR is quite weak for the full aperture system operating at reasonable 
standoff, illumination power, and collection aperture. We also demonstrate that these 
same CS-inspired reconstruction algorithms can be used to achieve excellent synthetic 
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aperture performance (i.e., clearly demonstrating full-aperture resolution recovery) from 
sparse collection lenses. 
 
5.1 Milestone Review 
 
Milestone 1: Completion of DH models suitable for use within CS framework 
This milestone has been met by the forward model results presented in Task 1 and the 
nonlinear reconstruction algorithm described in Tasks 2 and 3. The forward models 
include all relevant physical effects such as illumination power, exposure time, FPA 
sampling, optical aberrations, etc. The reconstruction algorithms leverage a dictionary 
prior and a nonlinear iterative soft thresholding technique to achieve high quality 
reconstructions that satisfy both the measurement and sparsity constraints. 
 
Milestone 2: Demonstration of CS reconstruction achieving 50% DH fill factor 
 
Milestone 3: Demonstration of CS reconstruction achieving 25% DH fill factor 
These milestones were intended to represent increasing algorithm complexity over the 
life of the project. Early in the project we were able to achieve reconstructions at 2x 
under-sampling (i.e., 50% fill-factor) as depicted in Figure 4. By the end of our project 
we were regularly reconstructing near-perfect 3D images (i.e., amplitude and phase) 
from 16x under-sampled measurements (i.e., 12.5% fill-factor), easily satisfying both 
milestones 2 and 3.  
 
Milestone 4: Graphical results that quantify reconstructed full-aperture DH image quality 
versus various physical parameters. 
Section 4.4 Task 4 presents example graphical results for the full-aperture system 
study.  
 
Milestone 5: Graphical results that quantify reconstructed sparse-aperture DH image 
quality versus various physical parameters. 
Section 4.5 Task 5 presents example graphical results for the sparse-aperture system 
study.  
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List of Symbols, Abbreviations, and Acronyms 
 
 
Symbol/Acronym/ 
Abbreviation Description 
BS Beam-Splitter 
CS Compressive Sensing 
DH Digital Holography 
DoD Department of Defense 
FA Full Aperture 
FPA Focal Plane Array 
IO Illumination Optics 
LD Laser Diode 
PCB Printed Circuit Boards 
PSF Point Spread Function 
RMSE Root Mean Squared Error 
SA Sparse Aperture 
SNR Signal to Noise Ratio 
NEP Noise Equivalent Power 
IST  Iterative Soft Thresholding 
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